

DUAL FUEL BLENDING SOLUTION

Retrofit Case Study

October 2019. RIJEKA, CROATIA

CONTENTS

- **1** DUAL FUEL BLENDING AND TYPICAL APPLICATONS
- **2** PBM SHOW CASE RT DFBS INSTALLATION IN NAFTNA INDUSTRIJA SRBIJE (GAZPROM NEFT)
- 3 CONCLUSION

ANY SITE WITH BYPRODUCT GAS CAN BENEFIT FROM DUAL FUEL BLENDING

Certain processes generate byproduct gases which can be used as additional fuel for other purposes

- Byproduct gases typically have large variations in pressure, flow and CH₄ content, which makes them unsuitable for applications that require precise dosing and stable combustion like gensets*
- Due to this, byproduct gases are usually burned on flares or vented to atmosphere, which is less and less acceptable.
- If used like fuel, they can generate significant savings through increased fuel efficiency.

* equipment whose function is to convert the heat capacity into mechanical energy and then into electrical energy.

REAL-TIME DUAL FUEL BLENDING SYSTEM CAN BE USED FOR GAS TURBINES

Proper mixing of "GOOD" and "BAD" gas in real-time can generate substantial fuel savings

- Blending two gas streams (Gas A AND Gas B) continuously, in real-time in order to reach and maintain optimal conditions for maximizing utilization of shaft power in prime movers such as IC gas engines or gas turbines
- Gas A should be a "good" gas with high and constant Lower Heating Value (LHV) such as:
 - Methane (CH4) from grid
 - CNG from trailers
 - LNG from grid or trailers
 - other gases with high LHV
- Gas B can be a "BAD", byproduct gas with low LHV such as:
 - Residue from CH₄ extraction process (LHV<20MJ/Nm³)
 - Bio gas (LHV 15MJ/Nm³)
 - Refinery residues
 - Other gasses: IGCC systems, landfill, brewing, ...
- Two models of application for real-time dual fuel blending system (RT DFBS):
 - new installation -> installing of a complete prime mover's control and management system, including module for RT DFBS
 - on top of existing installation -> installing of module for RT DFBS, on top of original prime mover's control and management system

TYPICAL CASES FOR REAL-TIME DUAL FUEL BLENDING SYSTEM APPLICATION

Byproduct gases with low LHV could be successfully mixed and burned

Used for prime movers such as:

- C gas engines -> modified diesel or petrol engines with or without additional gas blending
- gas turbines -> almost always with additional gas blending
- Gas characteristics:
 - very low LHV
 - composition of gas varies a lot (due to the nature of a gas derivation process, LHV could be varying a lot)
 - quantity of gas varies a lot (due to the nature of a gas derivation process, quantity at disposal could be varying a lot)
- Such gas characteristics demotivate manufactures of prime movers, so they avoid quoting such projects

PBM's Real-Time Dual Fuel Blending Solution has the ability to manipulate from 0-100% of each individual gas and thus:

- assure minimal LHV requested by the manufacturer
- maintain LHV constant, regardless of the main gas composition or quantity
- maintain desired electrical output, regardless of the gas quantity

CONTENTS

1

DUAL FUEL BLENDING AND TYPICAL APPLICATONS

2 PBM SHOW CASE – RT DFBS INSTALLATION IN NAFTNA INDUSTRIJA SRBIJE (GAZPROM NEFT)

3 CONCLUSION

NAFTNA INDUSTRIJA SRBIJE – SERBIAN NATIONAL OIL & GAS COMPANY

Gazprom Neft is a major shareholder and operator

- NIS Group is South-East Europe's major vertically integrated power generation system
- Core business
 - exploration, extraction and refining of crude oil and natural gas,
 - sales of a wide range of petroleum and gas products,
 - delivery of petrochemical and power generation projects.
- NIS HQs and main production facilities are located in the Republic of Serbia: crude oil and gas fields, Pančevo Refinery, tank farms, refueling stations network and 14 mini power plants
- NIS covers the entire Balkans region:
 - exploration and extraction of crude oil and gas in Romania and Bosnia-Herzegovina,
 - development of a retail network in Bulgaria, Bosnia-Herzegovina and Romania.

NIS – IMPLEMENTING THE PROGRAMME OF EFFICIENT USE OF GAS RESOURCES

14 mini cogeneration power plants installed in oil & gas fields across Serbia

NIS – PBM WAS APPROACHED TO PROVIDE DUAL FUEL BLENDING SOLUTION

on one of NIS' gas cogeneration mini power plants

PROJECT GOAL: Decrease quantity of flared gas, even if sacrificing genset output power

KEY CLIENT'S REQUIREMENTS ON DFB SOLUTION

SAFE

- DFB solution should always protect engine from sudden increase in exhaust temperatures generated by dangerous gas quality fluctuations
- All signals required for DFB solution should be taken from new sensors and transducers. Use of existing signals (splitting) should be avoided.

- DFB solution should operate in three different modes:
 A) "GOOD" gas only
 B) "BAD" gas only
 C) "BLEND" mode (any ratio)
- in case of mass flow valve failure, engine should be fully operable through existing "TEM EVO" system
- DFB solution should be monitored both locally, and remotely

SIMPLE

- DFB solution should be easy to operate => fuel blending should run automatically, without an operator's intervention
- all other "TEM EVO" functions (speed/load control, ignition control, start/stop and safety functions) should remain intact

NIS – GAS COGENERATION POWER PLANT SITE SS1 "VELEBIT"

based in Totovo selo with 4 CAT gensets, 4 MW of total power, was chosen for the pilot project

- SITE NAME: SS1 "VELEBIT" crude oil field
- SITE LOCATION: Totovo Selo, Serbia
- SITE PURPOSE: Gas cogeneration power plant based on 4 CAT gensets (1MW each)
- TASK: Implementation of Dual Fuel Blending solution on one of the gensets

QUICK FACTS:

- fuel supply "GOOD" quality gas (Natural gas) and "BAD" quality gas (Permeate gas)
- gensets were originally planned to run on mixture of both gases, but the system never actually worked
- PBM engineered, installed and commissioned Real-Time Dual Fuel Blending solution based on "Woodward" E6 Fuel Blending system.

NIS – ENGINE SPECIFICATIONS AND GASEOUS FUEL CHARACTERISTICS

CG170-12 Gas engine

CG170-12 GAS ENGINE SPECIFICATIONS									
Type of engine:	MWM CG170-12	Max. cont. rating (kW):	1200 ekW						
Number of cylinders:	12	Max. cont. rating (HP):	1610 HP						
Cylinder configuration:	V	Fuel type:	Well gas, Bio gas, Coal gas						
Engine type:	4 stroke	Compression ratio:	13,5:1						
Displacement:	53,09 L	Engine rotation direction:	CW						
Cylinder bore:	170mm	Engine speed, idling:	1500 rpm						
Piston stroke:	195mm	Maximum speed:	1800 rpm						
"GOOD" QUALITY GAS CHARACTERISTICS (Well Gas)									
"GOOD" QUALITY GAS C	HARACTERISTICS (We	ll Gas)							
"GOOD" QUALITY GAS C Methane content (CH4%):	HARACTERISTICS (We 81-85%	II Gas) Maximum gas pressure:	0,2 barG						
"GOOD" QUALITY GAS C Methane content (CH4%): Max gas flow:	HARACTERISTICS (We 81-85% 517 Nm3/h	ll Gas) Maximum gas pressure: Lower Heating Value (LHV):	0,2 barG 30,33 MJ/kg						
"GOOD" QUALITY GAS C Methane content (CH4%): Max gas flow: Minimum gas pressure:	HARACTERISTICS (We 81-85% 517 Nm3/h 0,1 barG	ll Gas) Maximum gas pressure: Lower Heating Value (LHV): High Heating Value (HHV):	0,2 barG 30,33 MJ/kg 32,07 MJ/kg						
"GOOD" QUALITY GAS C Methane content (CH4%): Max gas flow: Minimum gas pressure: "BAD" QUALITY GAS CH	HARACTERISTICS (We 81-85% 517 Nm3/h 0,1 barG ARACTERISTICS (Produ	II Gas) Maximum gas pressure: Lower Heating Value (LHV): High Heating Value (HHV): Luction Gas/Permeate Gas)	0,2 barG 30,33 MJ/kg 32,07 MJ/kg						
"GOOD" QUALITY GAS C Methane content (CH4%): Max gas flow: Minimum gas pressure: "BAD" QUALITY GAS CH4 Methane content (CH4%):	HARACTERISTICS (We 81-85% 517 Nm3/h 0,1 barG ARACTERISTICS (Produ 53-65%	II Gas) Maximum gas pressure: Lower Heating Value (LHV): High Heating Value (HHV): Luction Gas/Permeate Gas) Maximum gas pressure:	0,2 barG 30,33 MJ/kg 32,07 MJ/kg 0,2 barG						
"GOOD" QUALITY GAS C Methane content (CH4%): Max gas flow: Minimum gas pressure: "BAD" QUALITY GAS CH Methane content (CH4%): Max gas flow:	HARACTERISTICS (We 81-85% 517 Nm3/h 0,1 barG ARACTERISTICS (Produ 53-65% 345 Nm3/h	II Gas) Maximum gas pressure: Lower Heating Value (LHV): High Heating Value (HHV): Auction Gas/Permeate Gas) Maximum gas pressure: Lower Heating Value (LHV):	0,2 barG 30,33 MJ/kg 32,07 MJ/kg 0,2 barG 18,85 MJ/kg						

NIS – PBM PROVIDED RT DFB SOLUTION BASED ON WOODWARD TECHNOLOGY

Woodward E6 Fuel Blending Controller and TecJet[™] intelligent mass flow valves form the core of the solution

- The E6 Lean Burn Full Authority Fuel Blending control is a highly accurate, closed-loop system that maintains engine performance over a large range of fuel qualities without needing a plant-level fuel blending facility.
- C The heart of the system are intelligent Woodward TecJet[™] intelligent gas control valves that constantly measure mass flow of two gasses of considerably different combustion properties (natural gas with high CH₄ content & well gas with low CH₄ content).
- Information from the TecJetsTM is analyzed in E6 Fuel Blending controller, which calculates perfect gas mix ratio, so that produced electric power always stays constant, even if gas quality changes.

NIS – TEST RESULTS PROVED EFFECTIVENESS AND STABILITY OF RT DFB SOLUTION

Significant changes in blending ratio ranging from 50%-85% of "BAD" gas do not change generated power or λ

MEASUREMENT #	TEST START	TEST END	BLENDING RATIO ("BAD"/"GOOD" gas)	EL: POWER (KW)	"BAD" GAS FLOW (Nm3/h)	"GOOD" GAS FLOW (Nm3/h)	MEASURED λ
1	10:21	10:55	85/15 (84,8-83,8)	1041-1061	345-350	60-61	1,533-1,538
2	10:59	11:31	80/20 (80,0-80,8)	1033-1064	314-330	80-83	1,539-1,548
3	11:37	12:09	75/25 (74,4-74,8)	1030-1060	280-283	94-95	1,562-1,568
4	12:12	12:45	70/30 (69,1-69,6)	1040-1070	270-273	118-120	1,562-1,568
5	12:49	13:26	65/35 (64,9-65,1)	1033-1055	240-245	127-130	1,564-1,568
6	13:29	14:04	60/40 (60,4-60,4)	1030-1060	217-218	142-144	1,576-1,582
7	14:20	14:51	55/45 (54,2-55,8)	1033-1057	191-193	160-162	1,578-1,582
8	15:00	15:30	50/50 (49,7-50,1)	1030-1057	169-171	170-172	1,582-1,584

©2019 PBM Ltd.

STABLE

CHANGED

STABLE

NIS – PBM'S RT DFB SOLUTION MAY GENERATE STRONG BENEFITS

Depending on a blend ratio, gas and electricity market prices, and generated el. energy use scenario

100% decrease in flaring emissions!

1.25 mil. EUR

per year, available for other purposes!

BEFORE PBM'S DFB SOLUTION

- BLEND RATIO BAD/GOOD: -> 0/100
- BAD GAS SPENT: 0 Nm³/h
- GOOD GAS SPENT: 330 Nm³/h
- EL. POWER GENERATED: 1MW
- GOOD GAS COST: 173 EUR/h
- C EL. ENERGY REVENUE: 81 EUR/h
- NET OPERATING LOSS: 92 EUR/h

- 0.81 mil. EUR/year

AFTER PBM'S DFB SOLUTION

- BLEND RATIO BAD/GOOD: -> 85/15
- **BAD GAS SPENT:** 340 Nm³/h
- GOOD GAS SPENT: 60 Nm³/h
- **EL. POWER GENERATED:** 1MW
- GOOD GAS COST: 31 EUR/h
- EL. ENERGY REVENUE: -> 81 EUR/h
- NET OPERATING PROFIT: 50 EUR/h

+ 0.44 mil. EUR/year

CONTENTS

1

DUAL FUEL BLENDING AND TYPICAL APPLICATONS

2 PBM SHOW CASE – RT DFBS INSTALLATION IN NAFTNA INDUSTRIJA SRBIJE (GAZPROM NEFT)

3 CONCLUSION

OUR REAL-TIME DUAL FUEL BLENDING SOLUTION HAS PROVED EFFECTIVE

showing that byproduct gases can be successfully exploited to increase plant efficiency and protect the environment

- Byproduct gas with low LHV and varying composition and quantity could be successfully exploited by properly configured dual fuel blending system
- PBM's Real-Time Dual Fuel Blending Solution has the ability to dynamically manipulate the share of each individual gas from 0-100% and thus:
 - ensure minimal LHV requested by the manufacturer
 - maintain LHV constant, regardless of the main gas composition or quantity
 - maintain desired electrical output, regardless of the gas quantity
 - achieves blending ratio BAD GAS/GOOD GAS of 85/15 with retained and stable 1MW of power output
- Our referent RT DFBS installation in Naftna Industrija Srbije has proved:
 - **EFFECTIVE** -> it works reliably and keeps generated el. power stable on full output capacity
 - EFFICIENT -> it generates significant savings which can be redirected to other needs
 - ENVIRONMENT-FRIENDLY -> no more flared gas !

Check us on: www.pbm.hr

Ask for more information: pbm@pbm.hr

RIJEKA, CROATIA, OCTOBER 2019. ©2019 PBM Ltd.

BACKUP SLIDE

Detailed savings calculation shown on slide 15

PLANT NET OPERATING RESULT = EL. ENERGY REVENUE – GOOD GAS COST

EL. ENERGY REVENUE = EL. ENERGY SOLD (KWh) * PRICE (EUR/KWh)

GOOD GAS COST = VOLUMETRIC FLOW (Nm³/h) * HEAT VALUE (KWh/Nm³) * PRICE (EUR/KWh)

BEFORE PBM'S DFB SOLUTION

EL. ENERGY REVENUE = 1000 KWh * 0,081 EUR/KWh = 81 EUR/h GOOD GAS COST = 330Nm³/h * 9,69 KWh/Nm³ * 0,054 EUR/KWh = 173 EUR/h PLANT NET OPERATING RESULT = 81 EUR/h – 173 EUR/h = -92 EUR/h

AFTER PBM'S DFB SOLUTION

 EL. ENERGY REVENUE = 1000 KWh * 0,081 EUR/KWh = 81 EUR/h

 GOOD GAS COST = 60Nm³/h * 9,69 KWh/Nm³ * 0,054 EUR/KWh = 31 EUR/h

 PLANT NET OPERATING RESULT = 81 EUR/h - 31 EUR/h = 50 EUR/h

* 2019 price of natural gas in Croatia of 0,054 EUR/KWh used 2019 price of el. energy in Croatia of 0,08 EUR/KWh used Gas Heat Value of 9,69 KWh/Nm³ used